Flexible nonhomogeneous markov models for panel observed data.
نویسنده
چکیده
Methods for fitting nonhomogeneous Markov models to panel-observed data using direct numerical solution to the Kolmogorov Forward equations are developed. Nonhomogeneous Markov models occur most commonly when baseline transition intensities depend on calendar time, but may also occur with deterministic time-dependent covariates such as age. We propose transition intensities based on B-splines as a smooth alternative to piecewise constant intensities and also as a generalization of time transformation models. An expansion of the system of differential equations allows first derivatives of the likelihood to be obtained, which can be used in a Fisher scoring algorithm for maximum likelihood estimation. The method is evaluated through a small simulation study and demonstrated on data relating to the development of cardiac allograft vasculopathy in posttransplantation patients.
منابع مشابه
On $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes
In the present paper we investigate the $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes with general state spaces. We provide a necessary and sufficient condition for such processes to satisfy the $L_1$-weak ergodicity. Moreover, we apply the obtained results to establish $L_1$-weak ergodicity of quadratic stochastic processes.
متن کاملClustered mixed nonhomogeneous Poisson process spline models for the analysis of recurrent event panel data.
A flexible semiparametric model for analyzing longitudinal panel count data arising from mixtures is presented. Panel count data refers here to count data on recurrent events collected as the number of events that have occurred within specific follow-up periods. The model assumes that the counts for each subject are generated by mixtures of nonhomogeneous Poisson processes with smooth intensity...
متن کاملDynamic Frailty and Change Point Models for Recurrent Events Data
Abstract. We present a Bayesian analysis for recurrent events data using a nonhomogeneous mixed Poisson point process with a dynamic subject-specific frailty function and a dynamic baseline intensity func- tion. The dynamic subject-specific frailty employs a dynamic piecewise constant function with a known pre-specified grid and the baseline in- tensity uses an unknown grid for the piecewise ...
متن کاملFitting and interpreting continuous-time latent Markov models for panel data.
Multistate models characterize disease processes within an individual. Clinical studies often observe the disease status of individuals at discrete time points, making exact times of transitions between disease states unknown. Such panel data pose considerable modeling challenges. Assuming the disease process progresses accordingly, a standard continuous-time Markov chain (CTMC) yields tractabl...
متن کاملMarkov Switching Dirichlet Process Mixture Regression
Markov switching models can be used to study heterogeneous populations that are observed over time. This paper explores modeling the group characteristics nonparametrically, under both homogeneous and nonhomogeneous Markov switching for group probabilities. The model formulation involves a finite mixture of conditionally independent Dirichlet process mixtures, with a Markov chain defining the m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 67 3 شماره
صفحات -
تاریخ انتشار 2011